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A B S T R A C T   

A typical description of interpenetrating polymer networks (IPN) can be surprisingly simple, systems that consist 
of two crosslinked polymer networks that are physically entangled but not chemically linked. That simplistic 
description, however, successfully encompasses a wide range of synthesis processes and macromolecular ar-
chitectures that can include “semi-IPN” (IPN-like systems containing only one crosslinked polymer) and inter-
connected polymer networks (IPN-like systems that also include a limited amount of inter-network chemical 
links). The macromolecular topologies of these systems combine kinetically entrapped molecular-level mixing 
with limited phase separation into a continuous range of nanodomain compositions. This perspective-review 
presents the family of IPN systems, describes the synthesis parameters used to generate a variety of macromo-
lecular topologies, and discusses the damping properties, the ability to process latex IPN, the mechanical 
robustness of double network hydrogels, and IPN as templates for porous polymers, as well as recent innovations 
and cutting-edge applications. The wide gamut of macromolecular topological options described herein will 
serve as a guide to realizing synergistic behaviors by combining polymers in IPN-like structures.   

1. Introduction: Oh, what a tangled web we weave 

Hermann Staudinger’s "On Polymerization" article in 1920 insight-
fully described the true nature of the chemical bonding within the 
molecules produced by polymerization reactions [1,2]. Staudinger also 
contributed insight into the structure and nature of polymer networks, 
describing polyisoprene networks in the same 1922 article in which he 
coined the term “makromolekel” (macromolecule) [3] and describing 
copolymer networks (styrene and divinylbenzene (DVB)) in 1934 [4]. 
This perspective-review celebrates contemporary polymer science and 
engineering on the 100th anniversary of "On Polymerization" by 
describing the complex macromolecular architectures and arrangements 
inherent in interpenetrating polymer networks (IPN). 

A typical description of IPN can be surprisingly simple, systems that 
consist of two crosslinked polymer networks that are physically entan-
gled but not chemically linked [5]. That simplistic description, however, 
successfully encompasses a wide range of synthesis processes and 
macromolecular architectures, many of which are described in various 
reviews [6–13]. The term IPN includes simultaneous (sim) synthesis 
processes, sequential (seq) synthesis processes, and “semi-IPN”, systems 
that consist of a linear (i.e., non-crosslinked) polymer that is physically 
entangled within a crosslinked polymer network. The macromolecular 
architectures of these complex systems are generated through the 
combination of kinetically entrapped molecular-level mixing with 

thermodynamically driven, but macromolecular-mobility-limited, phase 
separation. The description of interconnected polymer networks (ICN) is 
similar to that of IPN, but with one important difference. ICN consist of 
IPN-like systems that also include a limited amount of inter-network 
chemical links. 

One early, principal, and prolific proponent of the importance of IPN 
was L.H. Sperling, whose irrepressible and infectious enthusiasm for IPN 
was emulated by his colleagues and students. Sperling’s 1981 book, 
“Interpenetrating Polymer Networks and Related Material”, was a 
relatively comprehensive description of the state of IPN at the time, 
describing the place of IPN in the rapidly developing world of polymers 
(1960s and 1970s). At the time, novel polymer systems were being 
generated by combining distinct homopolymers into multi-polymer 
systems dominated by blends, grafts, and blocks [5]. While IPN may 
have seemed to play a relatively low-key role, compared to the more 
elegant and more common multi-polymer systems, the combination of 
polymers in IPN enabled access to unique macromolecular topologies 
and properties. Sperling’s book gathered together a large body of IPN 
research and development, as stated in the Preface [5]: “One of the 
objectives of this book is to point out the wealth of work done on IPNs or 
closely related materials. Since many papers and patents actually con-
cerned with IPNs are not so designated, this literature is significantly 
larger than first imagined. It may also be that many authors will meet 
each other for the first time on these pages and realize that they are 
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working on a common topology.” In the pioneering work on IPN, the 
structure and properties were usually investigated using a combination 
of transmission electron microscopy (TEM), differential scanning calo-
rimetry (DSC), dynamic mechanical thermal analysis (DMTA), and 
stress-strain tests. 

2. Sequential and simultaneous: Which comes first? 

The most common synthesis routes for IPN, semi-IPN, and ICN are 
depicted schematically in Fig. 1. In the scheme, Mi represents monomer 
i, Xi represents the crosslinker for monomer i, Pi represents polymer i, 
xPi represents crosslinked polymer i, and Ri represents the reaction used 
to polymerize Mi and Xi. R1 and R2 are two reactions in a sequential 
synthesis, and therefore, they can entail the same polymerization 
mechanism. R1 and R3, on the other hand, are two reactions in a 
simultaneous synthesis, and therefore, they must be mutually exclusive 
polymerization mechanisms. RX is a selective IPN-forming reaction that 
crosslinks the linear polymer in a semi-IPN. RC is a selective ICN- 
forming reaction that generates a limited number of inter-network 
bonds. 

Sequential IPN are synthesized in a multi-stage process, and there-
fore, the same polymerization mechanism can be used to synthesize xP1 
and xP2. In brief, M1 and X1 are polymerized to form xP1. xP1 is swollen 
in M2 and X2, which are then polymerized to form xP2. There are many 
variations possible in this multi-stage process. If the synthesis takes 
place without X1 (but with X2), then a semi-1-IPN is formed. If the 
synthesis takes place without X2 (but with X1), then a semi-2-IPN is 
formed. If xP1 is only partially swollen in M2 and X2 and their poly-
merization rate is faster than the diffusion of M2 and X2 into xP1, then 
an IPN with a gradient in its macromolecular topology results. Simul-
taneous IPN are synthesized in a one-stage, one-pot process using two 
mutually exclusive polymerization mechanisms for xP1 and xP3 (e.g. 

chain-growth and step-growth). Since the reaction rates may not be the 
same, the faster reaction can produce an increase in the viscosity of the 
system. The macromolecular structure generated by the slower reaction 
will, therefore, be affected by the limitations on the mobilities of the 
growing macromolecules and of the monomers that are imposed by the 
increase in viscosity. If either X1 or X3 is not used, then the result is a 
semi-IPN. 

Unless stated otherwise, the general descriptions of the synthesis 
mechanisms and processes herein will, by default, be describing the 
combination of two covalent networks in IPN. Usually, the same de-
scriptions of the synthesis mechanisms and processes can be applied to 
the synthesis of semi-IPN, simply by omitting one of the two cross-
linkers. A comparison of an IPN formed by combining xP1 and xP2 with 
a random copolymer will be conceptually based on a monomer mixture 
that contains the same amounts of M1 and X1 as in xP1 and the same 
amounts of M2 and X2 as in xP2. A comparison of an IPN formed by 
combining xP1 and xP2 with a polymer blend will be conceptually based 
on a coagulated mixture of individual xP1 and xP2 latices that were 
synthesized using emulsion polymerization. 

The scheme in Fig. 1 provides a framework for classifying the 
different types of macromolecular architectures that can be generated 
from M1, M2, and M3. Obviously, real systems would be much more 
complex than these simplistic descriptions. An example of real mono-
mers could have: styrene as M1, DVB as X1, n-butyl acrylate as M2, 
ethylene glycol dimethacrylate as X2, a combination of a polyether diol 
and toluene diisocyanate as M3, and a polyether triol as X3. In such 
examples, while the Pi are homopolymers, the xPi are clearly co-
polymers. In the description of IPN systems herein, the copolymeric 
nature of the xPi and the inhomogeneities that exist within the xPi will 
not be emphasized. The effects of adding Xi to Mi on the macromolecular 
structure and properties (e.g., the glass transition temperature (Tg) and 
the mechanical behavior) will not be discussed in detail. The 

Fig. 1. A schematic depiction of the most common synthesis routes for IPN, semi-IPN, and ICN.  
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dependence of a copolymer’s macromolecular structure and network 
structure upon the polymerization mechanism, the reactivity ratios, and 
the complexities of network topologies (the presence of dangling 
strands, entanglements, and loops) have been discussed in detail else-
where [14–23]. This perspective-review will focus upon the synergisms 
attainable through the complex macromolecular topologies produced 
when combining polymers in IPN. 

3. Macromolecular architecture: Mix and separate 

The underpinning concept in IPN is the synergistic combination of 
two incompatible polymers with very different sets of properties that is 
achieved by generating, and then entrapping, molecular-level mixing. 
While the two polymers are thermodynamically driven to undergo phase 
separation, they are topologically prevented from doing so through the 
entanglement of their individual networks. In an “ideal” IPN, the 
entrapped mixing of the networks would generate a homogeneous 
composition at the molecular level that would be, in some ways, 
equivalent to that generated by random copolymerization. Most IPN, 
however, are far from ideal. Limited nanoscale phase separation takes 
place during and following synthesis, producing a broad spectrum of 
domain compositions that can range continuously from xP1-rich to xP2- 
rich, as shown schematically in Fig. 2. The resulting macromolecular 
architectures and properties are, therefore, quite different from those of 
random copolymers and quite different from those of the more elegant 
and more controlled copolymer architectures such as blocks, grafts, 
stars, and brushes that can be achieved through controlled/“living” 
polymerizations. While IPN, semi-IPN, and ICN were originally based on 
two synthetic, covalently crosslinked, organic polymers, systems have 
also been developed that are based on: renewable resource networks 
(such as natural oils [24–27], polysaccharides [28], cellulose [29], hy-
aluronic acid [30], and collagen [31,32]); supramolecular networks 
[33]; and inorganic networks [34–40]. 

An in-depth, detailed monograph written by Y.S. Lipatov that focuses 
on phase separation in IPN describes the structures and properties 
through the prism of the thermodynamic and kinetic factors involved, 
discussing thermodynamics and phase separation, heterogeneous 
structures and morphologies, relaxation transitions and viscoelasticity, 
chemical kinetics and phase separation, and compatibilization [41]. 
Lipatov relates that it became clear early-on that IPN were 
phase-separated materials and were quite different from the “ideal” of 
two crosslinked networks entangled homogenously on the 

macromolecular level. The uniqueness of IPN compared to polymer 
blends, therefore, lies in the interpenetrating structures that exists 
within the quasi-equilibrium phases formed under forced compatibili-
zation. This is also reflected in Sperling’s use of a synthesis-based defi-
nition of IPN as “a combination of two polymers in network form, at 
least one of which is synthesized and/or cross-linked in the immediate 
presence of the other” [42] rather than a topological-based definition. 

The unusual properties often associated with IPN are directly related 
to the unusual macromolecular architectures that combine molecular- 
scale mixing with a continuous compositional range of nanoscale 
phase-separated domains. One example is the broad damping temper-
ature range that results when a polymer with a low Tg (e.g., xP1) and a 
polymer with a high Tg (e.g., xP2) are combined. The effects on the 
DMTA storage modulus (E′) and tan δ of combining xP1 and xP2 in a 1/1 
ratio are illustrated schematically in Fig. 3. xP1 is depicted as having a Tg 
of around − 100 ◦C and a low modulus at room temperature, while xP2 is 
depicted as having a Tg of around 150 ◦C and a high modulus at room 
temperature. The Tg and modulus of a random copolymer of M1, X1, M2, 
and X2, with an (M1+X1) to (M2+X2) ratio of 1/1, is also included in 
Fig. 3. The copolymer Tg, predicted to be 25 ◦C by the Fox equation [43], 
is shown between the Tgs of xP1 and xP2. 

At their Tgs, the homopolymer, copolymer, and blend curves in Fig. 3 
all exhibit relatively rapid decreases in E′ and relatively narrow tan δ 
peaks. The 1/1 blend of xP1 and xP2 in Fig. 3 represents the formation of 
a bicontinuous structure that is conceptually similar to the structure 
formed by a 1/1 blend of immiscible P1 and P2, which exhibits the Tgs of 
the phase-separated component polymers. The modulus between the 
xP1 and xP2 Tgs would be ~50% of the high-Tg polymer modulus since 
the load-bearing component only constitutes 50% of the blend. 

The characteristic IPN curves in Fig. 3, from a 1/1 combination of 
xP1 and xP2, are quite different from the homopolymer, copolymer, and 
blend curves. The IPN curves reflect both the presence of entrapped 
molecular-level mixing and the presence of nanoscale phase-separated 
domains with a continuous range of compositions. The modulus de-
creases gradually between the Tgs associated with xP1 and xP2 and the 
tan δ peak is relatively broad and relatively low. The relatively wide 
breadth of the IPN tan δ peak is associated with the continuous range of 
nanodomain Tgs that corresponds to the continuous range of phase- 
separated nanodomain compositions. The relatively low height of the 
IPN tan δ peak is associated with the additional limitations on macro-
molecular mobility. These additional limitations, imposed by the 
mutually entrapped macromolecular topology, are even more stringent 

Fig. 2. Schematic illustrations showing two physically entangled macromolecular networks, highlighting the broad spectrum of domain compositions that can range 
continuously from xP1-rich to xP2-rich, for IPN (left) and ICN (right). 
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than those imposed by the individual crosslinking of P1 and P2. The 
effects of IPN formation on chain conformation [44], on combining two 
elastomeric polymers [45,46], and on combining elastomeric polymers 
with brittle polymers [47] have been investigated in some detail. 

4. Begin at the beginning: Over and over and over again 

The IPN macromolecular topology seems to have been continually 
reinvented in the patent literature. Sperling has described examples of 
syntheses going back as far as 1914 that involved the formation of IPN, 
sometimes even unbeknownst to those concerned [5,10,49,50]. The first 
recorded IPN work seems to have been that by J.W. Aylsworth, the chief 
chemist in Thomas A. Edison’s laboratory. The platter phonograph re-
cords, introduced to replace wax cylinders, were made of Bakelite, a 
brittle phenol-formaldehyde resin. Aylsworth added natural rubber and 
sulfur to enhance impact resistance, thus forming two independent 
polymer networks that combined a glassy polymer and a rubbery 
polymer in a simultaneous IPN [51]. The visual distortion that appeared 
in crosslinked amorphous polymers (polystyrene (PS) and poly(methyl 
methacrylate) (PMMA)) was eliminated by swelling the crosslinked 
polymer in the same monomer mixture and polymerizing, thus forming 
a sequential IPN (xP1 with xP1), in work by J.J.P. Staudinger (the son of 
Hermann Staudinger!) and H.M. Hutchinson in 1951 [52]. Swelling the 

crosslinked polymer stretched the first network and the stretched 
network topology was “locked-in” by the second polymerization. 
Enhanced ion exchange resins, synthesized by using the IPN topology to 
intimately mix a negatively charged network with a positively charged 
network, were produced by G.S. Solt in 1955 [53]. 

The term IPN was coined by J. Millar in 1960 who was investigating 
beads produced using multiple polymerizations of styrene-DVB mixtures 
[54]. The in-depth investigations of IPN began to intensify in the late 
1960s with the first works by Sperling [6], by H.L. Frisch, D. Klempner, 
and K.C. Frisch [55], by K. Shibayama [56], and by Lipatov [57] and the 
field became well-established in the 1980s. The aspects of IPN explored 
in those initial works included phase-separation thermodynamics, dy-
namic mechanical behavior as a function of frequency and temperature, 
mechanical behavior, and damping. Several variations on the IPN theme 
were also investigated. In latex IPN (LIPN), the IPN were synthesized 
using emulsion polymerization, where the presence of the emulsion’s 
external phase can affect the macromolecular structure. In “thermo-
plastic IPN”, the crosslinks are physical, and therefore, can enable flow 
at elevated temperatures [5]. Highly porous IPN were produced by 
cryo-gelation [58–61] and by templating within the continuous phase of 
high internal phase emulsions (HIPEs), emulsions containing over 74% 
dispersed internal phase [62–65]. In emulsion templating, the locus of 
initiation (within the external phase or at the oil-water interface) in 
almost identical reaction systems can affect the macromolecular struc-
ture. In double network elastomers, the first network is oriented 
(stretched) during the formation of the second network [66–68]. More 
recently, the advantageous physical combination of two individual 
polymer networks has been brought to the forefront of cutting-edge 
polymer research and development once again by J.P. Gong’s work on 
double network (DN) hydrogels [69–74]. Tables summarizing various 
aspects of IPN, from synthesis to application, have been compiled in a 
number of reviews, with some focusing on hydrophobic IPN [6,10] and 
others focusing on hydrogel IPN [7,9,13]. 

5. Latex IPN: Complex structures, itty bitty living space 

While IPN are usually synthesized using bulk polymerizations and 
using batch processes, they can also be synthesized using sequential 
emulsion polymerizations to produce LIPN [5,6,10]. LIPN syntheses 
usually take place in oil-in-water (o/w) emulsions. The presence of an 
aqueous external phase can affect the macromolecular topology and 
enable the generation of a wide variety of complex multiphase struc-
tures, including core-shell (C/S) nanoparticles (NPs) with IPN cores, as 
described by Sperling [75–78] and demonstrated by M. Narkis and Y. 
Talmon [79–82]. LIPN syntheses can take place using batch processes, 
where all the components are added at the beginning of the reaction, or 
using semi-batch processes, where the monomers (and often the sur-
factants and/or initiators) are added slowly and continuously 
throughout the reaction [83]. 

The morphology of the monomer-swollen polymer particles in 
emulsion polymerization is not necessarily straightforward, even in a 
relatively simple one-monomer, single-stage synthesis (e.g., the emul-
sion polymerization of styrene). On one hand, a uniform morphology 
would be expected from uniformly monomer-swollen polymer particles 
[84,85], while on the other hand, a C/S structure would be expected 
from a polymer-rich core surrounded by a monomer-rich shell [86–89]. 
C/S structures can also be formed during single-stage emulsion co-
polymerizations. A core that is rich in the more hydrophobic monomer 
and a shell that is rich in the more hydrophilic monomer could be pro-
duced in one scenario, while a core that is rich in the more reactive 
monomer and a shell that is rich in the less reactive monomer could be 
produced in a different scenario. 

The two-stage emulsion polymerizations that are usually used to 
synthesize LIPN can be used to produce a wide variety of latex particle 
morphologies, reflecting the large number of synthesis parameters 
involved. The structures that can be generated using two-stage 

Fig. 3. Schematic illustrations of E′ and tan δ curves produced by the repre-
sentative polymer systems (after Fig. 5 in Ref. [48]). These systems have a fixed 
M1/X1 ratio and/or a fixed M2/X2 ratio. The random copolymer, IPN, and 
blend have a (M1+X1)/(M2+X2) ratio of 1/1. From front to back: xP1 (blue); 
xP2 (red); a random copolymer of M1, X1, M2, and X2 (purple); an IPN based 
on xP1 and xP2 (green); a blend of xP1 and xP2 (orange). (For interpretation of 
the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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sequential emulsion polymerizations depend on the polymer-polymer 
compatibility and on the degree of seed crosslinking and can include 
C/S, inverted C/S [90], raspberry-like (phase-separated domains at the 
surface) [91,92], Janus (crescent-moon-like or half-moon-like) [93,94], 
and dumbbell structures. One well-known example is the synthesis of 
acrylonitrile-butadiene-styrene (ABS) using emulsion polymerization. 
During the synthesis, grafted styrene-acrylonitrile (SAN) inclusions are 
produced within the polybutadiene (PBd) particles and then "wart-like" 
SAN protrusions are produced on the PBd surface that, with further 
polymerization, become SAN shells around the SAN-filled PBd cores 
[95–97]. 

For LIPN, the first synthesis stage consists of generating a seed latex 
through the polymerization of M1 and X1 in the presence of a water- 
soluble surfactant and a water-soluble initiator. For IPN formation, M2 
and X2 are added to the seed latex, often with additional surfactant and 
initiator, and then polymerized. As indicated previously, variations on 
the same synthesis procedures can also be used to synthesize semi-IPN. 
In monolithic IPN generated using bulk sequential syntheses, the in-
timacy of macromolecular mixing, and the degree of phase separation is 
determined by the solubilities of M2, X2, and xP2 in xP1 and by the 
ability of xP1 to be swollen by M2 and X2. In LIPN syntheses, the 
monomer hydrophilicity becomes an additional factor in determining 
the multiphase structure owing to the presence of an aqueous external 
phase. In addition to the hydrophobic LIPN that are synthesized by two- 
stage polymerization within o/w emulsions, hydrogel LIPN can be 
synthesized through two-stage polymerizations within water-in-oil 
emulsions [98]. 

The formation of an LIPN structure based on xP1 seed latex particles 
is illustrated schematically in Fig. 4. If the xP1 seed particles do not swell 
in M2 and X2, then xP2 will form a shell around an xP1 core. If, however, 
xP1 swells in M2 and X2, then the resulting structure will be more 
complex. An IPN latex particle can be formed at relatively low M2 and 
X2 contents (75/25 in Fig. 4). The macromolecular topology within the 
latex particles can combine entrapped molecular-level mixing, phase- 
separated nanodomains, and a continuous range of compositions, as 
described for monolithic IPN [80,99,100]. Eventually, as the M2 and X2 
content increases, the core will not be able to swell further and incor-
porate more M2 and X2. An xP2 shell will then form around the IPN core 
by the polymerizing M2 and X2 that cannot be incorporated within the 
monomer-swollen xP1 particle. 

The approach to combining two polymers within a latex particle was 
used by H. Hopff in 1935, who polymerized vinyl monomers that were 
added to a natural rubber seed latex [10,101]. The resulting latex was 
coagulated and was then crosslinked using sulfur, producing semi-IPN. A 
series of LIPN for noise and vibration damping applications, modifying 
the viscoelastic behaviors by combining rubbery and glassy polymers 
(PS, PBd, polyacrylates, polymethacrylates (PMAs), and poly(vinyl 
chloride)), were developed by Sperling [75–78,102,103]. LIPN have 
been applied as coatings, adhesives, resins, golf ball threads, sealable 
films, damping materials, and impact-resistant thermoplastics, and have 
been applied as additives in paints, toners, and rubber crumb [10]. 

Narkis demonstrated that LIPN particles with diameters between 50 

and 200 nm can have significant applicative advantages compared to the 
same IPN that is synthesized as a monolith. IPN are thermosets, and in 
principle, cannot be processed following synthesis. Above the Tgs of both 
xP1 and xP2, however, IPN become rubbery and deformable. This 
deformability is advantageous in LIPN, enabling the IPN latex particles 
to be processed using standard thermoplastic techniques and equipment 
(e.g., compression molding, injection molding) [48,82,104]. The 
deformable LIPN particles can “flow” via plug flow, motion that can 
maintain the individual identities of the crosslinked particles. The 
macromolecules at the surfaces of neighbouring particles can entangle 
and form phase-separated inter-particle domains during plug flow, as 
illustrated schematically in Fig. 5. The high-Tg phase-separated inter--
particle domains can then become glassy physical crosslinks upon 
cooling, binding the crosslinked particles together and generating a 
strength-forming mechanism. The particle nature of LIPN adds pro-
cessability and re-processability to the advantageous properties avail-
able from IPN systems. A processable LIPN in which the low-Tg polymer 
is dominant is the equivalent of a thermoplastic elastomer, while a 
processable LIPN in which the high-Tg polymer is dominant is the 
equivalent of a high-impact thermoplastic. 

6. IPN-templated porous polymers: Less is more 

Porous polymers are produced by generating empty volumes within 
the polymer and then fixing them in place [105–109]. The approaches 
used to produce porous polymers include macromolecular design, 
self-assembly, phase separation, templating (solid and liquid), sol-gel 
formation, and foaming. Many of these approaches use the formation 
of networks to fix the polymer around a volume that is either filled with 
a gas or filled with a removable porogen. As early as 1929, crosslinking 
was used to entrap air within a rubber latex, producing foam rubber 
[110]. Staudinger, investigating the copolymerization of styrene and 
DVB in organic solvents, concluded that the resulting materials were 
three-dimensional networks containing solvent-filled pores [105,111]. 
In “On Polymerization”, Staudinger also described two techniques now 
commonly used to produce porous polymers, solvent induced phase 
separation (SIPS) and non-solvent induced phase separation (NIPS) [1]. 

Nano-scale porosity has been generated in polymers through the 
removal of sacrificial porogens in a variety of systems, ranging from 
block copolymers [107,109,112] to low-k dielectrics [113,114]. Simi-
larly, the IPN and semi-IPN topologies can be used as templates for the 
formation of porous polymers through a judicious selection of the 
components. In this scenario, one of the polymers is used as a sacrificial 
porogen that can be removed using selective degradation and/or se-
lective extraction. To prevent collapse, it is essential that the framework 
polymer remains rigid and unaffected by the removal of the porogenic 
polymer. Sperling developed the sacrificial network concept during his 
investigation of IPN structures. He synthesized seq-IPN containing one 
network that was crosslinked using DVB and another network that was 
crosslinked using acrylic anhydride (AAn), a labile crosslinker [115, 
116]. Porous structures were generated by removing the 
AAn-containing network through de-crosslinking (hydrolysis in an 
NaOH solution) and selective extraction. 

Porous polymers can be generated within semi-IPN simply through 
the selective removal of the linear polymer, since de-crosslinking is not 
needed. D. Grande, an early proponent of this approach, generated 
porous polymers through selective solvent extraction of sim-semi-IPN 
based on polylactide (PLA) and a crosslinked PMMA, investigating the 
effects of crosslinking and polymer-polymer miscibility [117–119]. In 
other work, sim-semi-IPN were synthesized by combining the ring 
opening polymerization (ROP) of ε-caprolactone with the free radical 
copolymerization of styrene and DVB [120]. Porous P(S-co-DVB) 
monoliths were then generated by removing the linear poly(ε-capro-
lactone) (PCL) through hydrolysis. The porous structure was based on 
the extent of phase separation, which was modified by varying the 
relative rates of polymerization through variations in the concentration 

Fig. 4. A schematic illustration of LIPN synthesis showing a seed particle (100/ 
0), an xP1-xP2 IPN particle (75/25), and an xP2 shell around an IPN core (50/ 
50 and 25/75) (after Figure 13 in Ref. [82]). 
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of the ROP catalyst. Pores of around 2 μm were generated when phase 
separation occurred before gelation, at faster ROP rates (higher catalyst 
concentrations). Pores of around 50 nm and a significant increase in 
specific surface area were generated when gelation occurred before 
phase separation, at slower ROP rates (lower catalyst concentrations). 
The porous structures generated from IPN and semi-IPN can, therefore, 
be fine-tuned by modifying the polymerization sequence, the relative 
polymerization rates, the polymer-polymer miscibility, the composition, 
and the degree(s) of crosslinking, all of which influence the extent of 
phase separation [121,122]. 

Selective electron beam degradation has also been used to generate 
porous polymers from multiple network systems based on dissolving a 
low density polyethylene (PE) in a solution of methacrylates [123–125]. 
The radical polymerization and crosslinking of the methacrylates at a 
lower temperature was followed by the radical crosslinking of the PE at a 
higher-temperature. This combination of radical reactions also pro-
duced some covalent links between the two networks, generating ICN 
rather than IPN. Under electron beam irradiation, the PMA underwent 
degradation, while the PE underwent crosslinking. Porous, crosslinked 
PE membranes were produced by extracting the degraded PMA. Here, 
again, the porous structure was templated by the phase-separated 
structure produced by the thermodynamic drive to phase separate, on 
one hand, and by the kinetic ability to do so, on the other. 

7. Double networks: Re-booting IPN 

Hydrogels are water-swollen networks of hydrophilic polymers that 
are either crosslinked through reversible physical bonds (e.g. hydrogen 
bonds or hydrophobic interactions) or through permanent covalent 
bonds. In the 1960s, hydrogels were developed as polymer systems for 
biomedical applications such as contact lenses. The high water content 
in hydrogels was expected to produce more favourable interactions with 
living tissues than were produced by the standard hydrophobic poly-
mers being investigated at the time [126]. The pervasive uses of 
hydrogels today include applications for hygiene, cosmetics, contact 
lenses, drug delivery, agriculture, food, wound care, and tissue engi-
neering. Most of the work on IPN and semi-IPN described previously 
involves hydrophobic polymers. The formation of IPN within hydrogels, 
therefore, will involve polymers that were usually not included in IPN 
research (e.g. non-ionic water-soluble polymers and polyelectrolytes 

(anionic, cationic, zwitterionic)). Hydrogel IPN will also involve 
polymer-water interactions and polymer-polymer interactions that can 
produce novel macromolecular architectures and properties. 

While hydrogels have exhibited great promise for a wide variety of 
biomedical applications [127–133], there are still certain practical 
limitations on their use. Hydrogels are usually friable (easily crumbled) 
due to their relatively high water contents, limiting their use in appli-
cations that require the ability to bear loads and deformations without 
failing [134,135]. The need for robust hydrogels has inspired research 
on hydrogel systems that involve complex load-bearing and deformation 
mechanisms [136]. These systems include nanocomposite hydrogels 
[135,137–143], hydrogels with complex macromolecular architectures 
(slide-ring hydrogels [144], hydrogel IPN and semi-IPN [8,9,145–152], 
highly porous hydrogels [153–159], and combinations thereof 
[160–162]. 

Gong’s development of double network (DN) hydrogels have 
brought the macromolecular topologies that result from combining two 
hydrogel networks to the forefront of cutting-edge polymer research and 
development. The original DN hydrogels combined a highly crosslinked 
polyelectrolyte (poly(2-acrylamido-2-methylpropanesulfonic acid), 
PAMPS) as the first network with a lightly crosslinked uncharged 
polymer (polyacrylamide, PAAm) as the second network, where the 
molar ratio of the second network to first network was ten or more 
[69–74,163]. This specific method of combining two hydrophilic poly-
mers produced hydrogels containing 60–90% water that had fracture 
strengths higher than 10 MPa and high wear resistances [69]. DN syn-
thesis is, for the most part, sequential, with xP1 swollen in an aqueous 
solution of M2 and X2, which are then polymerized. The macromolec-
ular architecture of a representative DN system with a PAMPS network 
as the first polymer and a linear PAAm as the second polymer is illus-
trated schematically in Fig. 6a [73]. The PAMPS network has a mesh size 
(ξ) of several nanometres and large “voids” whose size (ξvoid) is much 
larger than ξ. The PAAm, entangled with the PAMPS network, is largely 
found in PAAm-rich “crack-stopping” domains that are formed within 
the voids that exist in the PAMPS network. 

This specific method of combining two hydrogels produced excep-
tional improvements in mechanical strength compared to the two 
component hydrogels. The enhancement in mechanical properties re-
sults from the ability of the second network to prevent the crack growth 
that can lead to catastrophic failure. As seen for IPN, both entrapped 

Fig. 5. A schematic illustration of a molded LIPN showing two physically entangled macromolecular networks within the IPN latex particles (highlighted) and 
indicating the presence of both intra-particle nanodomains and inter-particle strength-forming nanodomains (after Figure 14 in Refs. [82]). 
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molecular-level mixing and phase separation play important roles. Here, 
the formation of phase-separated xP2-rich domains is promoted by the 
existence of local volumes with low polymer densities in the inhomo-
geneous xP1 network structure. While the DN hydrogels originally 
consisted of two covalently crosslinked networks, a number of variations 
have been investigated including DN with hydrogen bonding and su-
pramolecular crosslinking that can be used to effect self-healing 
[165–170], DN with ionic coordination crosslinking [171], DN with 
strong hydrophobic interactions [172], and DN with physical cross-
linking [173,174]. Variations on the basic DN structure include systems 
with a single network that is combined with a linear polymer and sys-
tems where both polymers are linear and semicrystalline, with the 
polymer crystals acting as physical crosslinks [175]. 

Several models have been used to explain the toughness of DN 
including a mechanism of local yielding and hardening during defor-
mation, a mechanism of energy dissipation by xP2 that has a shielding 
effect and keeps the DN from failing, and a mechanism whereby frac-
tured clusters of the relatively brittle xP1, formed during deformation, 
act as sliding crosslinks for the more deformable xP2 [136,145,164]. The 
expected changes in the macromolecular architectures of DN hydrogels 
upon deformation are illustrated schematically in Fig. 6b [164]. In 
Fig. 6b(i), below the critical stress, the structure is as described in 
Fig. 6a. Above the critical stress, in Fig. 6b(ii), the relatively brittle 
PAMPS fractures and forms clusters that behave as sliding crosslinks for 
the more deformable PAAm and the hydrogel becomes softer. 

Gong has recently extended the hydrogel-toughening DN concept to 
hydrophobic elastomers [176] by generating a hydrophilic-hydrophobic 
hybrid DN combining a brittle, hydrophilic polyelectrolyte network with 
a stretchable, hydrophobic polyacrylate network. The synthesis pro-
cedure included polymerizing water-soluble monomers in an aqueous 
solution to generate a polyelectrolyte network, incorporating acrylates 
through a series of solvent exchanges, polymerizing the acrylates, and 
solvent removal. The significant enhancement in elastomer toughness 
was ascribed to energy-dissipative polyelectrolyte chain-scission during 
deformation. The development, structures, properties, and applications 
of DN hydrogels have been described in a number of recent reviews [13, 
72,131,133–136,145,164,177]. J. Zheng’s list of some emerging DN 
frontiers includes peptide polymers, triple networks, physical bonding, 
dynamic covalent bonding, adapting the sacrificial network concept to 
other polymer systems, and additive manufacturing [13]. 

8. Applications: Two are better than one 

The applicative adoption of polymers that are combined through IPN 

formation continually renews itself with the advances in polymer sci-
ence and engineering, offering routes to “tune” the properties of novel 
polymers of interest through combinations with other polymers that 
offer synergistic advantages. Many of the applications originally asso-
ciated with IPN were focused upon their damping behavior and their 
enhanced mechanical properties [10]. There is now an increasing in-
terest in IPN for novel and niche biomedical applications where an 
“established” material is lacking. Under such circumstances, the added 
value of the IPN material can outweigh the additional costs associated 
with the more complex materials system. IPN have been applied as films 
for burn healing with advantageous transport properties and as soft 
contact lenses with advantageous refractive index gradients [10]. DN 
hydrogels have also been applied for a variety of biomedical applica-
tions [8,9,132,178]. 

Advances in polymer synthesis chemistries and in macromolecular 
structures are often rapidly adopted into novel IPN systems for previ-
ously unforeseen applications, taking advantage of novel polymers with 
properties that were previously inaccessible (e.g., conductivity, semi- 
conductivity, and luminescence) and combining them with polymers 
having orthogonal properties [10]. Thus, IPN formation enables 
leveraging the properties of interest in one polymer into systems that can 
provide applicative advantages. In stretchable electronics, the IPN ar-
chitecture was used to provide a combination of extensibility and 
compatibility with the conductive moiety [179,180]. The formation of 
IPN actuators based on electromechanical polymers and highly elastic 
polymers was used to support pre-strain and eliminate external sup-
porting structures [181,182]. Sequential IPN of amorphous polymers 
and crosslinked liquid-crystalline polymer networks were used control 
the mechanical and photo-responsive properties, yielding soft actuator 
films with a homogeneous alignment of mesogens [183]. IPN and 
semi-IPN are being applied as fuel cells membranes with advantageous 
proton conductivities, methanol permeabilities, and stabilities. IPN 
systems have combined a linear conductive polyelectrolyte with a hy-
drophilic matrix to entrap a hydrophobic fluorinated linear polymer 
within a conductive polyelectrolyte network, to combine a hydrophobic 
fluorinated polymer network with a conductive polyelectrolyte network, 
and to combine a linear conductive polyelectrolyte with a more hy-
drophobic polymer in a hydrophilic-hydrophobic hybrid IPN [7]. 
Hydrophilic-hydrophobic hybrid IPN and semi-IPN have also been 
investigated as solid anion-exchange membranes for positive air elec-
trodes in energy conversion and storage systems [184,185]. 
Hydrophilic-hydrophobic hybrid IPN can also be generated by synthe-
sizing hydrophobic IPN containing a polymer that can be rendered hy-
drophilic through subsequent modification (e.g., the hydrolysis of poly 

Fig. 6. Schematic illustration of a representative DN: (a) macromolecular architecture (Reproduced with permission from Ref. [73], copyright 2005, American 
Chemical Society); (b) the effect of deformation on the macromolecular architecture (i) before necking and (ii) after necking (Reproduced with permission from Refs. 
[164], copyright 2010, Royal Society of Chemistry). 
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(t-butyl acrylate) to poly(acrylic acid)) [64,186]. 

9. IPN update: Back to the future 

Recent IPN research often involves investigating innovative and 
cutting-edge polymer systems for advanced applications using experi-
mental frameworks that are similar to those originally developed during 
the pioneering work on IPN. For the most part, recent research continues 
to include a focus on synthesis and the development of novel monomers, 
reaction mechanisms, interpenetration routes, and crosslinking strate-
gies. Interestingly, a relatively large percentage of recent publications 
seems to involve hydrogels, both synthetic and natural, and also seems 
to involve bio-related applications. The types of systems investigated 
now include hydrophobic, hydrogel, hydrophilic-hydrophobic hybrids, 
and organic-inorganic hybrids. Some research focuses on understanding 
the macromolecular topology and its implications, combining experi-
mental work with computer modelling. The overwhelming majority of 
research, however, emphasizes applications. Recent investigations are 
not only driven by the enhancement in mechanical properties, but are 
also driven by the new challenges associated with energy-related ap-
plications, 3D printing, separation processes, and “high tech” applica-
tions (e.g., sensors, actuators). A brief description of a limited selection 
of recent IPN papers, loosely arranged into topics, is included below. 
These papers, reflecting the state of the current challenges, the novel 
polymers developed, and the innovative synthesis strategies introduced, 
will serve to inspire future work. 

9.1. IPN structure and behavior 

Hydrogel IPN, with both networks based on poly(sodium acrylate), 
were swollen in salt solutions to investigate the effects of topology on the 
macromolecular mobility in water and on the partitioning of salt [187]. 
Low crystallinity hydroxyapatite was used to provide energy-dissipative 
sacrificial bonds to toughen DN hydrogels that were based on a fully 
pre-stretched, densely crosslinked, rigid, brittle polyelectrolyte and a 
loosely cross-linked, soft, stretchable neutral polymer [188]. 

9.2. Bio-related IPN 

A one-pot, biodegradable, thermoresponsive shape memory semi- 
IPN for tissue engineering was generated by combining a crosslinked 
PCL diacrylate with either PLA or a poly(lactide-co-glycolide) [189]. 
Sim-IPN fillers generated in-situ for corneal defects were based on 
collagen (azide− alkyne cycloaddition crosslinking) and hyaluronic acid 
(thiol− ene Michael click crosslinking) [190]. An injectable, one-pot IPN 
used for in-situ tissue regeneration was based on peptide self-assembly 
and on chitosan (covalently crosslinked using a N-hydrox-
ysuccinimide-terminated poly(ethylene glycol) (PEG)) [191]. An artifi-
cial ionic skin with multimodal sensation, high toughness, stretchability, 
and ambient stability and transparency was produced by assembling two 
DN, each combining a physically crosslinked agarose, a covalently 
crosslinked PAAm, and one of two oppositely charged polyelectrolytes 
[192]. Cartilage mimics based on a porous PCL framework were 
generated by 3D printing hydrogel sim-IPN that combined alginate 
(CaCl2 crosslinking) and gelatin methacryloyl (photoinitiated cross-
linking) [193]. 

9.3. Responsive IPN 

A temperature-switchable, light-scattering-based, bright whiteness 
was generated in IPN that combined agarose (physically crosslinked, 
then subsequently removed) and a chemically crosslinked thermores-
ponsive poly(N-isopropylacrylamide) (PNiPAAm) [194]. 
On-demand-release drug carriers with thermal and pH responsiveness 
were generated in bicontinuous microemulsions by polymerizing and 
crosslinking an acrylate in the organic phase while simultaneously 

polymerizing a hydrophilic monomer in the aqueous phase, swelling the 
resulting multiphase polymer in a second hydrophilic monomer, and 
then polymerizing and crosslinking the second monomer [195]. Pho-
toswitchable sol-gel transitions and catalysis were generated by 
combining a reversible supramolecular PEG network (linked by metal-
–organic cages) and a covalently crosslinked PEG network [33]. Ther-
moresponsive shape-memory seq-IPN hydrogels were generated by 
polymerizing and crosslinking acrylamide in a solution containing an 
elastin-like polypeptide whose physical crosslinking was reversible 
[196]. 

9.4. Energy and “high tech” applications 

The mechanical durability of the donor-acceptor active layer in 
organic photovoltaic devices was enhanced by the in-situ photoinitiated 
thiol-ene generation of semi-IPN based on multi-functional acrylates 
[197]. Semi-IPN hydrogels with high conductivities for solid-state 
zinc–air batteries were synthesized by combining a covalently cross-
linked polyelectrolyte with an alkaline solution of methyl cellulose 
[198]. Seq-IPN proton exchange fuel cell membranes with enhanced 
conductivities and selectivities were generated by crosslinking sulfo-
nated poly(vinyl alcohol) in the presence of a PAMPS network [199]. 
The color activation in a mechanochromic polymer was enhanced by 
generating a tough DN combining a mechanochromic polyacrylate 
network and a (non-mechanochromic) polyacrylate network [200]. 

10. Perspective: United we stand 

The IPN family occupies a niche within the wide range of macro-
molecular topologies that are available for generating multi-polymer 
systems with synergistic properties. Unlike the copolymer systems 
(blocks, grafts, stars, and brushes) that combine individual polymers 
using covalent bonds, the individual polymers in IPN are physically 
entwined but not covalently linked. Unlike polymer blends, in which 
immiscible polymers can undergo extensive phase separation, the 
incompatible polymers in IPN are unable to undergo extensive phase 
separation. Initially, IPN applications were focused on the extraordinary 
damping properties that originated in the broad range of phase- 
separated domain compositions. More recently, IPN were applied to 
synergistically combine polymers with very different, often orthogonal, 
properties (for example, hydrophilic-hydrophobic hybrid IPN) and to 
form mechanically robust hydrogels and elastomers. In addition, porous 
polymers can be generated from IPN and semi-IPN containing a poly-
meric porogen by using the kinetically-limited phase-separated struc-
ture as a template. 

The macromolecular architectures in IPN can be varied extensively 
through variations in the multiplicity of synthesis parameters that are 
involved. These parameters include the polymerization sequence, the 
polymerization rates, the polymer compatibility, the polymerization 
mechanisms, the polymer ratio, and the extents of crosslinking. These 
parameters affect the macromolecular topology through their effects on 
the network homogeneity, the entrapped molecular-level mixing, and 
the extent of phase separation. In LIPN, the monomer and polymer hy-
drophilicities also play an important role and the generation of nano-
scale latex particles enables processing and re-processing using standard 
thermoplastic techniques and equipment. 

The macromolecular topologies associated with the combination of 
two polymers through the formation of IPN, semi-IPN, and ICN are, in 
many ways, ubiquitous. As Sperling noted in 1981, the widespread use 
of these macromolecular topologies may not even be recognized as such 
by those concerned in their development. These interpenetrating to-
pologies do, however, play an important role in producing synergistic 
properties and their significance should not be underestimated. One 
recent example is the exceptional augmentation in hydrogel mechanical 
properties achieved through the formation of DN. The wide gamut of 
macromolecular topological options described herein will serve as a 
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guide to the realization of synergistic behaviors attainable by combining 
polymers in IPN-like structures. 
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